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|. Introduction

In their fina report, the NRC Panel on Poverty Measurement and Family Assistance
recommended numerous changes to the method by which the US Census Bureau measures
poverty.[I The Panel sought to make recommendations that could implemented. One of the
Panel’s proposals was to subtract from the family’s resources the amount of medical out of
pocket (MOOP) spending. Given that neither the Current Population Survey (CPS) nor the
preferred data set, the Survey of Income and Program Participation (SIPP), collect information on
the family’s medical spending, a natural question is how well can one impute this needed data
from other sources to either the CPSor Sl PP’?H

The purpose of this paper is to examine the current imputation strategy, discuss its potential
shortcomings, and report upon efforts to re-estimate the MOOP model on data from the
Consumer Expenditure Survey (CEX).

[1. Current Imputation Strategy

The current strategy to impute MOOP spending is a two step procedure. First, national
control totals for MOOP spending in families headed by an individual under 65 years old (Non
Elderly) and those families headed by an individual at least 65 years old (Elderly) are determined.
Second, these two aggregate amounts are then allocated to individual CPS families in a manner
that reflects the distribution of MOOP spending reported in the National Medical Expenditure
Survey (NMES) conducted in 1987 and subsequently ‘aged’ to reflect spending patternsin 1992.H

' See Citro and Michael (1995).

? Dataon anindividual family’s out of pocket medical spending has been collected only in three nationally
representative surveys. the National Medical Expenditure Survey (NMES), the Consumer Expenditure
Survey (CEX) and currently, the Medical Expenditure Panel Survey (MEPS).

* A fuller description can be found in Betson (1998) which is attached to the paper.



To formalize this procedure, let A denote the two age groups where NE signifies the non
elderly families and E denotes the elderly families. In the first step, estimates of the tota
spending in the two age groups are determined. Let C, denote the estimate of total national
MOOP spending for the A" age group.

The next step is to allocate C, to the individua family records on the CPS file. This
alocation is based upon the distribution of MOOP spending in a secondary data source such as
the NMES or CEX. Using, this secondary data source, one can estimate a regression mode! that
describes the distribution of MOOP spending. This regression model can be used to predict a
level of MOOP each CPS record. The predicted values for MOOP in the CPS are not the
expected value of MOOP spending for the CPS family based upon the estimated regression
moded. If the expected value of MOOP was used then the variation in MOOP in the CPS files
would be smaller than the variation found in the secondary data source because of ignoring the
unexplained errors in the imputation. To replicate the entire distribution of MOOP spending in
the CPS, this unexplained variation needs to be included in the imputation procedure. This is
accomplished by using the regression model to compute the expected value of the family’s
MOOP spending and then adding the ‘unexplained error variance’ through the use of a random
number generator.

Let m, denoted the f" family’s predicted MOOP spending. The alocation of the national
control totals to the individual family records is accomplished by using a proportional raking
technique. In other words, the imputed MOOP value for the f* family record would be equal to

* C
m,=m, x$y—-=m, xS, .
A A i; A A A
The two scaing factors (S,), one for each age group, are computed by predicting MOOP for each

record in the file and taking their sum for each age group. Then the scaling factor is expressed as
the ratio of the age’ s group control to the sum of predicted MOOP values.

A few remarks on the current procedure are in order at thistime. The importance of trying to
replicate the entire distribution of MOOP spending must be stressed. Too often, the expected
value of the variable is utilized for imputation. Given that MOOP spending is to be subtracted
from the family’ s resources, the use of the expected value of MOOP will likely overstate the true
proportion of families whose actual MOOP spending would place them in poverty.lzI To avoid this

* See Betson (2000)
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systematic bias in measurement, the imputation strategy must try to faithfully replicate what is
known about the entire distribution of MOOP spending of similar families not just the expected
amount.

Maintaining the appropriate correlation with other characteristics is equally important.
Estimating the total number of individuals and families that are poor when accounting for MOOP
spending, capturing the appropriate covariance between income and MOOP spending will be
crucial. Accurately estimating the composition of the poverty population will depend upon how
well we can reflect the covariance of demographic characteristics such as age and education with
MOOP spending.

Finally, the regression approach taken in the current imputation strategy is not the only
method to impute MOORP to the CPS or SIPP. Pat Doyle is investigating an alternative strategy
utilizing a statistical matching technique known as ‘hot decking'. Instead of predicting MOOP
spending via a regression model, actua records from the secondary data source are merged onto
the CPS or SIPPfiles. In theory, the imputation of a single variable to the primary data set (CPS
or SIPP) via either method should yield approximately the same results. Any differences that
occur will be the result of differences in the common variables taken into account via the
matching process and the variables used in the regression models. This paper will not attempt to
compare the relative merits of these two strategies but will focus upon the regression model

approach.

[11. A Critical Examination of the Current Imputation Strategy
A. Control Totas

The MOOP control totals were developed to reflect the actual amount of MOOP spending of
families of a given age group in a given year. For the moment, let us assume that the primary
data set to which we wish to impute MOOP is for the same year as the secondary data survey.
Further, let us assume that aggregate amount of predicted MOORP is less than the control total for
each age group

;miA <C, .
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Thisis not an unanticipated result given that the predicted MOOP values should reflect not only
individual MOOP spending but how the families report their actual spending to the surveys.
Proportionally raking the predicted MOOP values to the controls implies that the imputation leads
to estimates of actual MOOP spending.

The use of estimates of actual MOOP spending in poverty measurement is a mistake.
Currently, al other sources of family resources reflect what is reported to the survey. We know
that many sources of income are greatly under reported in many surveys. Even the SIPP that has
better reporting of income than the CPS, has significant under reporting. If other sources of
resources were smilarly adjusted for under reporting then the current method would be
appropriate. But since they are not adjusted, the use of estimates of actual MOOP in poverty
measurement with reported amounts of other family resources will overstate the impact of the
subtraction of MOOP spending on poverty counts.

The proportional raking adjustment, S,, assumes that under reporting of MOOP spending is a
constant proportion for all family units. Assuming a constant rate of under reporting for all levels
of spending is dubious and most likely leads to overstating actual MOOP spending at the higher

levels of spending and understating actual MOOP spending at lower levels.

The discussion to this point has assumed that we are imputing data from one survey to
another survey where both surveys are for the same time period. Unfortunately, surveys that
target medical expenditures are fielded very infrequently. The National Medical Expenditure
Survey (NMES) was conducted only once every ten years with the most recent being in 1987.
The Medical Expenditure Panel Survey (MPES) seeks to provide more frequent and hence
current estimates of what individuals and families spend on health care. While MPES collects
data similar to the NMES, a decision has been made that out of pocket expenditures for medical
services, supplies and prescription drugs will not provided to the public with the family’s cost of
health care premiums. While the files will be made public separately, no identification number
will be provided to match families across the two files. The aged 1992 NMES file represents the
only specially targeted survey on health care that provides both out of pocket expenditures for
medical care and premium payments.

Given that the regression model will be used to impute MOOP spending in years other than
the year represented in the secondary data set (NMES), the question is how to reflect the changes
in MOOP over time. The effect of changes in the number of individuals and families as well as
the socio-economic composition of the population will be reflected in the out year primary data
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base and their inclusion in the regression model. However, differences in the cost of medical care
and how individuals respond to the movement in the relative price of medica care will not be
reflected in the predicted MOOP levels.

Even if families do not change their utilization of health care in response to changes in its
price, multiplying the predicted MOOP values by the change in the price index for medical care
will only crudely reflect how medical cost inflation affects individual families. As medical costs
increase, insurance premiums will increase and employers may ask their employees to bear a
larger share of their health care utilization (the actual cost or price of health care may rise faster to
the family than in the economy). But as the price of utilization rises to the family, the family may
choose to utilize less health care.E Without further research, it is not clear whether indexing
predicted MOOP spending for changes in the cost of health care will over or understate MOOP
spending.

Recommendation 1:

Imputation of MOOP spending to the CPS should not control the aggregate imputed
amounts to an aggregate control total reflecting actual MOOP spending or administrative
estimates of MOOP spending. The only scaling of imputed values from the regression
model should be done to reflect differences in the costs of medical care between the time
between the year of the primary data set and the secondary data set.

° Estimates of the price elasticity of health care demand range from zero to —1.00. See Phelps (1997)
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Recommendation 2;

After periods of hedth care inflation, the basic imputation should be re-estimated using
secondary data from atime period closer to the year of the primary data. Thisis needed
to capture any changes in utilization of health care and shifting of health care costs from
employersto families.

B. Regression Model for Allocation

The prediction of MOOP spending levels for an individual family on the CPS has been
described as being the result of aregression model. To examine this characterization further, let
us for the time being that al families are all similar to each other except that each family has a
different level of MOOP spending. Specifically, let us assume that all the individuas have
private insurance coverage, are non poor (incomes in excess of 150% of their respective poverty
lines, non elderly single white individuals and all have MOOP spending. Given no differencesin
observed characterigtics in the sample, we could assume that MOOP spending in this family
group is distributed log normally, in other words,

In(m;) =a +¢&;

where a is a constant and ¢, is a random normal variable with mean zero and standard deviation
0. Using the sample of households in the secondary data of thistype, we could estimate a and o.
We will dencte these estimates as a and s respectively. Next we would proceed to the primary
data set and impute to each single with the same characteristics a value for MOOP spending by
first drawing a random number from a standard normal random number generator, e, for the f"
family in the primary data set and imputing

exp[a+ S X ef] :

While this would have been the most straightforward way to implement a regression
imputation strategy, it could not be used when the NRC Panel first received data from NMES. It
was provided in tabular form (the percentage of the sample with a given set of characterigtics that
had values of MOOP within a given interva). Lacking data on individual families, a different
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estimation strategy was employed. We assumed that the underlying MOOP spending was
distributed as alog-logistic random vari ableaand hence

1

Prob[ms M] = F[M] = 1+ exp[~(d + pIn(M))]

or aternatively as
U U
FIM
In U=56+¢In(M) .
Aa-rmjg ° oMM

Using the tabular information on families with the same characteristics, we had information on
the cumulative probability of MOOP being less than M for various values of M. Based upon this
data from the NMES, we could estimate ¢ and gvia OLS. These estimates will be denoted as d
and f respectively.

To impute MOOP values, the first step would be to draw from an uniform random number
generator. Let this draw be denoted as u, for the f" family. This draw represents where the "
household in the MOOP distribution for families with identical characteristics. Given this‘place’
in the MOOP distribution, we then compute the value for MOOP that corresponds to this
percentile

Thisvalue isthen used as the imputed MOOP value in the primary data set.

This description of the regression approach presents the closest link between this approach
and dtatistical matching via a hot deck method. In a statistical match, one would collect al the
observation in the secondary data source that ‘close’ to the characteristics of the family to which
we wish to impute avalue in the primary data set and randomly select one of these observation to
append to the primary data set. While there is no need for statistical matching to do this, let us
assume that the random selection is done in the following manner. First al of the similar
observations are sorted with respect to vaue of MOOP. Then for each observation, the

6

The log-logistic distribution was initially defined by Shah and Dave(1963) in a manner similar to the
definition of the log normal distribution. This citation was found in Johnson and Kotz (1970).
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percentage of similar observations with values less than that observation's MOOP is then
computed for al observations that are similar to the one you want to impute avalue. Then take a
random number from an uniform random number generator and pick the observation whose
cumulative probability is closest to the random number. This value of MOORP is used for the
observation in the primary data base. This is identical to the procedure employed in the log-
logistic regression approach where the only difference is the statistical description of the MOOP
distribution is used instead of the actual MOOP from the secondary data source.

This discussion has assumed that al families have the same characteristics which clearly not
the case. To dlow for differences in the characteristics of the families to affect the imputation of

MOOP spending, one could estimate separate sets of parameters (a,0) or (9,¢ for each family
type.

This log-logistic regression approach was used for the preparation of the NRC Panel report.
After the report was released, problems with the MOOP data were discovered. These problems
were documented in Betson, Citro and Michael (2000). A new version of the MOOP data was
provided that not only rectified the problemsin the earlier data set but also provided the data from
individuals observations that were used to compute the earlier tabular information provided to the
Panel. Revisions to the log-logistic model are described in Betson (1998). However, when the
new data was made available, a complete evaluation of modeling approach was not undertaken.
However with the larger degrees of freedom provided by the individual datafrom the NMES, it is
prudent to take acloser look at the regression strategy at thistime.

To compare the modeling strategies, we will examine one family type: a white, non-poor,
non-elderly single individua with private hedth care insurance and MOOP spending. In the
NMES sample, there are 662 observations for this family type.IZI Examining the distribution of
MOORP in this subgroup, we see that it is skewed toward zero with a long upper tail. This
observation suggests that the assumption of log normality may be a reasonable assumption!3 The
log normal approach would use the sample to estimate the mean (a) and standard deviation (o) of
the log of MOOP (Inmoop). For this subgroup, the estimates are -.784 and k.AfHarespsiively-
Figure 1 plots the density of Inmoop implied by these estimates with g Kernel estimate of the

Inmoop distribution in the sample.
Normal —
approximation

In the sample, 60 observations of this family type do not have MOOP spending reported. In the next
section, we will discuss how we plan to deal these zero observations.

® In the remainder of the paper, | will be analyzing the log of MOOP spending where MOOP is expressed
in $1,000. Further all of the resultsin the paper are weighted statistics.

7
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Figure 1

Figure 1 shows that the sample distribution of Inmoop is not normally distributed but is also
skewed. The use of the assumption of log normality would lead to imputing too many
observations with large values of MOOP spending (note the larger or fatter upper tail of the
normal approximation to Inmoop compared to the kernel estimate).

The second approach was to assume that MOOP has a log-logistic distribution. To estimate
this model, the log of the ratio of the cumulative probability of MOOP for that value of MOOP
over one minus the cumulative probability (Inodds) was regressed against a constant and the log
of MOOP (I nmoop)ﬂ. The results of the regression are reported below.

Source | SS df VB Nunber of obs = 661
--------- R LT TP F( 1, 659) =13438.41
Model | 2027.57039 1 2027.57039 Prob > F = 0.0000

° The value for the cumulative probability for a given observation was computed in the following manner.
For each subgroup, the observations were sorted. Then for each observation, the number of weighted
observations with a value of MOOP less than or equal to the current observation’s value of MOOP divided
by the total number of observations was recorded as the cumulative probability.
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Residual | 99.4291262 659 .150878795 R- squar ed = 0.9533
--------- S e Adj R-squared = 0.9532
Total | 2126.99951 660 3.22272653 Root MSE = .38843

| nodds | Coef . Std. Err. t P>t [95% Conf. Interval]
_________ e
| nnoop | 1.226566 . 0105808 115.924  0.000 1. 20579 1.247342
cons | . 9599494 . 0176881 54.271  0.000 . 9252176 . 9946811

Figure 2 plots the cumulative probability function based upon the sample observations, the log
normal estimates described above and the current log-logistic estimates.

- Sample - Log Normal
- Log-Logistic
100 —
50 —
0 —
T T T T T
-7.23626 1.83618
Inmoop
Figure 2

Figure 2 provides two important insights. First, the log normal and the log-logistic assumptions
lead to ailmost identical cumulative probability functions. This result is not unexpected. Johnson
and Kotz (1970) note that probit and logit models of discrete choice will lead to very similar
results because of the similarity of cumulative probability functions of the normal and logistic
distributions. Transforming the basis of the distribution to log scae should not alter this
relationship. Secondly, we can conclude that our current strategy of the use of the log-logistic
function will lead to too many observations with high values of MOOP spending (note that the
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CDFs for the log normal and log-logistic approximations lie below the sample CDF a high
values of MOOP).

What can be done to address this problem? The solution will require a better approximation.
While this approach is ad hoc, | am suggesting that higher powers of the log of MOOP be
included in the regression model. After some experimentation, | am proposing that a cubic
approximation be employed. Specifically, the regression model will now be

[l [
5 FMm]

A-FIM] =0+ ;%('”(M))

The regression resultsfor this model are presented below

Source | SS df VB Nunber of obs = 661
--------- R F( 3, 657) =41417. 33
Model | 2115.81186 3 705.270619 Prob > F = 0.0000
Residual | 11.1876545 657 .017028393 R- squar ed = 0.9947
--------- R e Adj R-squared = 0.9947
Total | 2126.99951 660 3.22272653 Root MSE = .13049
| nodds | Coef . Std. Err. t P>t [95% Conf. Interval]
_________ e
| nnoop | 1.640223 . 0067654 242. 442  0.000 1.626939 1. 653508
I nnp2 | . 2358787 . 0043474 54.257  0.000 . 2273422 . 2444152
I N3 | . 0217826 . 0006417 33.947  0.000 . 0205227 . 0230426
cons | . 8545995 . 0066664 128.195 0.000 . 8415096 . 8676895

In generd, this approximation to the sample distribution will denoted as a ‘n order log-logistic’
ditribution. Figure 3 plots the sample cumulative probability function with the log-logistic (1%
order), the 2™ order and the 3 order log-logistic approximation. This figure focuses upon MOOP
spending exceeding$1,000 the top one third of the MOORP distribution.

Figure 3

2" order
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. Sample - Log-Logistic

- 2nd order log-logistic - 3rd order log-logistic
100 —
90 —
80 —
70 -
T T T T T
.00099 1.83618
Inmoop

While employing a quadratic term improves the fit of the cumulative probability function, adding
a cubic term continues to improve the fit.EI

Even with this improvement to the regression strategy, the probability of being in the upper
tail of the MOOP distribution is still overstated by the higher order smoothing strategies. My ad
hoc recommendation is to limit imputation to be less than the estimated 99" percentile of the
estimated MOORP distribution. This can be easily accomplished by limiting the value of the
uniform random, u,, to amaximum value of .99. Hence once the parameters, J, ¢, @, and ¢, have
been determined for a family type, we would impute to the f" observation of the same type in the
primary data set a value of M that solves the following equation

5 min(.99,u,)

] 3 n
M minos.uyd 0t 3, aln())

In summary, | would make the following recommendations.

A 4" order approximation continues to improve the fit but increase in goodness of fit was judged to

marginal. | should note that this was observation was subjective and not based upon any statistical test.
The other consideration favoring the cubic approximation is that explicit solutions exist for cubic equations
while they do not for 4" order equations. This will simplify the imputation procedure by not requiring
numerical techniques for solving for M given avalue of u..
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Recommendation 3:

A 3 order log-logistic approximation to the cumulative probability used to describe the
distribution of MOOP for subgroups of the population.

Recommendation 4:

When imputing values to the primary data set, MOOP vauesbe limited to the lower 99%
of the estimated MOORP distribution.

C. Dealing with Zero MOOP

We have focused upon imputing MOOP to those observations with MOOP spending.
However, not al observations in the NMES sample have MOOP spending. To impute MOOP to
all of the observations in the primary data set would be wrong. While estimation problems akin
to sample selection bias issues are most likely present, these issues are going to be ignored.
Assignment of a non zero MOOP amount to observations will be based upon the proportion of a
family type that have reported MOORP in the secondary data base. Random assignment will
utilize this estimated proportion in conjunction with a draw from an uniform random number
generator. If P isthe proportion of the secondary data base of agiven family type then anon zero
MOOP level will be assigned to the f" observation in the primary data base if

V,<P

where v, isadraw from uniform random number generator. Otherwise, azero value for MOOP
will be assigned.

D. Qualified Medicare Benefit (QMB) and MOOP

Individuals who qualify for Medicare and have incomes less than 100 percent of poverty, the
Medicare program waives all cost sharing provisions and Part B premiums. For Medicare
eigible individuals between 100% and 120% of poverty, Part B premiums are waved. These
benefits are referred to as the Qualified Medicare Benefit (QMB). This benefit was implemented
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in 1990. In the current imputation procedure that uses the NMES, Part B Medicare premiums
were not included in the definition of MOOP. Hence al elderly individuals are accessed a Part B
premium unless they report receiving Medicaid. This procedure does not take into account the
QMB portion of Medicare and leads to an overstatement of MOOP spending for this portion of
the elderly population. A simple solution will be to add a Part B premium only for those elderly

individual’ s income exceeds 120% of poverty.

QMB aso waives the cost sharing provisions of Medicare eligible medical services and
supplies. Given that the NMES is based upon 1987 data aged to 1992, it is doubtful that aging
procedure took this provision into account. While the current imputation imputes no MOOP for
elderly individuas reporting the receipt of Medicaid, not al poor ederly receive Medicaid.
Hence for these individuals, the current procedure overstates their MOOP spending due to the
QMB. However, to include zero MOOP for all poor elderly would also be wrong since Medicare
accepts not all medical expenses. The largest single exception is prescription drugs. Since the
current NMES data does not separate MOOP spending on drugs, | have chosen to continue the
current practice of imputing MOOP spending to all poor elderly who do not report Medicaid.

Recommendation 5:

For those individuals over 65 years old living in afamily whose incomeisless than 120% of
poverty, no Medicare Part B premiums will be assigned.

E. Concluding Remarks

One conclusion that could be drawn is that the estimation and imputation strategy currently
employed by myself and the Census Bureau produces too many observations with relatively large
valuesfor MOOP. In thissection, | have proposed five recommendations aimed at improving the
imputation of MOOP throughout the entire distribution. In this next section, | will discuss my re-
estimation of the model on the NMES. The following section reports upon a comparison of

various imputation approaches using the March 1993 CPS.

IV. Re-fitting the Model on NMES data

Before proceeding to estimate the imputation model on more recent data, | thought it would
be instructive to re-fit the modified model on the economic and demographic aged NMES data.
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In the previous section, the case was made for the inclusion of squared and cubed terms of the log
of MOOP inthe model. That isthe approach that will be taken in this re-estimation.

In the former version of the model, 36 separate family types were constructed for the non
elderly population. These groups were based upon the insurance coverage, the family size,
poverty status, and race of the family. The elderly population was subdivided into 8 groups based
upon age, family size and poverty status. For each of these 42 groups, the cumulative probability
was constructed by sorting the observations and computing the percentage of the group that had
MOOP spending less than the observation. The cumulative probability was then transformed into
the log ‘odds that is the dependent variable of the regression analysis. Previous analysis of the
data were separately performed on the non elderly and elderly samples. Thisanalysisalowed for
only the main effects of the group’s other characteristics to affect the estimation of the intercept
(4) and slope coefficients (¢). All interaction effects between characteristics were assumed to be
zero. In retrospect, this was an unfortunate assumption. Significant interaction effects where
found when the 1% order log-logistic model was recently re-estimated. This lead to separate
estimates of the model for each of the 42 groups. The regression estimates for the 3 order log-
logistic model are reported in Appendixes A and B.

Since the imputation of zero MOOP values has not changed, the previous estimates of the
probability of having MOOP spending will be used.
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V. Comparison of MOOP Imputations on the 1993 CPS

In this section, | will report upon a Monte Carlo experiment | conducted to empiricaly

examine the consequences of the various recommendations that | have proposed. Since the
NMES data represents 1992, the choice of the March 1993 CPS was ideal since the imputation
would not require any out year projections. | chose three aternative imputation implementations

that were the following:

Original Imputation: This is strategy that | have employed and forms the basis of the
Census Bureau's imputations. This strategy uses a proportiona rake to established national
totals. For 1992, the control totals were $153 billion for the non elderly population and $55.5
billion for the elderly non Part B premium MOOP. The regression model was estimated f
the non elderly and elderly populations separately as described in the previous section.
Finally, limitation were made on MOOP imputations. The maximum MOOP for a non
elderly family was $8,200 while $18,000 for an elderly family. These limits represent the 99"
percentile of the two populations and were provided by Pat Doyle.

No Control Totals. This implementation was identical to the previous one except that no
raking was performed to ‘ hit’ the control totals.

New Implementation: This implementation reflects recommendations 1,3, 4, and 5 made
earlier. The 3“ order log-logistic model was estimated for each of the 42 different family
types. Limits were placed on the maximum MOOP that was assigned. No family was
assigned a MOOP that exceed the 99" percentile of the MOOP distribution for their
respective family type. Elderly adults living in families whose income is less than 120% of
poverty were not assigned Medicare Part B premium. And no raking was performed to
achieve a control total.

For each of the three implementations, | performed 100 MOOP imputations to the entire

March 1993 CPS. The first variable that | examined was the mean MOOP (includes both zero
and positive values) in each of the two age groups. The following table presents the Monte Carlo

results for the smulations as well as the averages from the NMES (secondary file).

1

See Betson (1998) for more a detailed description of the regression model and estimates. This paper is

attached.
 Appendix C contains the FORTRAN source code for the new imputation routines.
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Average MOOPIin:;

Non Elderly Elderly
NMES $1,432 $2,304
Original Imputation $1,815 $2,600
No Control Totals $1,735 $1,771
New Imputation $1,398 $2,238

The use of the control totals significantly raises the average imputed MOOP from their respective
averagesin the original NMES file. While this difference could represent the difference between
actual and reported MOOP, the differences are striking. But what is also shown is how the raking
dramatically hides what a rather poor job the original regression model does in replicating the
mean MOOP. Average non elderly spending is overstated while elderly spending is understated.
While the previous discussion made us question the appropriateness of the model representing the
upper tail of the MOORP distribution, these figures suggests it does a poor job replicating means.
Given the similarity between the log-logistic and log normal models, moving toward alog normal
model would not be adesirable path to follow.

The similarity of the average MOOP imputed with the New Implementation and the averages
found in the NMES file are extremely comforting. They provide evidence of the gain in
imputation accuracy provided by the new regression model and other recommendations.

I computed the average poverty rates for children, the elderly and for the total population for
each of three implementation. For purposes of comparison, | have provided the official poverty
rates for 1992. One might be concerned that the random noise in the imputation may lead to large
variation in the poverty rates based upon the imputations. In the following table, |1 have also
included the standard deviation of the estimated poverty rates.
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Children
Official 21.87
Old Imputation 24.90
(.11)
No Control Totals 24.76
(.11)
New Imputation 23.86
(.08)

Poverty Rate of:
Elderly

12.90
20.68
(.18)

18.60
(.18)

19.87
(.20)

All Persons
14.52

17.72
(.06)

17.32
(.06)

16.86
(.05)

The use of the control totals did lead to higher poverty rates. For children, the effect of not raking
the data was minor compared to the elderly. However, the raking masked the rather poor
imputation of the underlying model. When the improved model is employed, less MOOP is
assigned to the non elderly and more is attributed to the elderly. This shift in the distribution
between the two age groups has the expected impact on poverty rates. Children’s rates fall and
elderly rates rise when compared to the rates produced by the previous regression model without

control totals.

The standard deviations (in parenthesis) of the poverty rates show how little possible
variation in the rates can be caused by imputation procedure. In my opinion, they are quite small.

MOOP Imputation
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V. Imputation Model based upon CEX data

TO BE COMPLETED NEXT WEEK

V. Conclusions
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->ipl=
Sour ce

Model
Resi dual

305. 842493
3. 8568665

309. 699359

Appendix A

3 101.947498
91 .042383148

94 3.29467403

Nurber
F( 3
Prob > F
R- squar ed
Adj R-squared
Root MSE

of obs
91)

3“ Order Log-Logistic Regression Results for the Non Elderly — 1992 NMES

95
2405. 38
0. 0000
0.9875
0.9871
. 20587

1. 028337
. 3279916
. 1039791
. 2481396

. 9681726
. 3006955
. 0921795

. 192876

1.088501
. 3552877
. 1157788
. 3034032

-> p| =
Sour ce

Model
Resi dual

23. 5796402
. 8735684

Std. Err t

. 0302884 33. 952

. 0137416 23. 868

. 0059403 17. 504

. 0278213 8.919
df VB

3 7.85988005
14 . 062397743

Nunber
F( 3,
Prob > F
R- squar ed
Adj R-squared
Root MSE

of obs
14)

= 18
= 125.96
= 0.0000
= 0.9643
= 0.9566
= . 2498

1. 275706
. 1921735
. 0123426
. 8920519

1.008279
-. 0390621
-. 0342207

. 7020969

1.543133
. 4234092
. 0589059
1. 082007

->ipl=
Sour ce

Model
Resi dual

2115. 81186
11. 1876545

Std. Err t

. 1246871 10. 231

. 1078129 1.782
. 02171 0. 569

. 0885659 10. 072
df VB

3 705.270619
657 .017028393

Nurber
F( 3,
Prob > F
R- squar ed
Adj R-squared
Root MSE

of obs
657)

661
41417. 33
0. 0000
0. 9947
0. 9947

. 13049

[ 95% Conf .

Interval]

1. 640223
. 2358787
. 0217826
. 8545995

Std. Err t

. 0067654 242. 442
. 0043474 54, 257
. 0006417 33. 947
. 0066664 128. 195

1. 626939
. 2273422
. 0205227
. 8415096

1. 653508
. 2444152
. 0230426
. 8676895
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-> p| =
Sour ce

Model
Resi dual

421. 075911
3. 15275169

3 140. 358637
131 . 024066807

Nunmber of obs
F( 3, 131)
Prob > F
R- squar ed
Adj R-squared
Root MSE

135
5832. 04
0. 0000
0. 9926
0.9924
. 15513

2. 067369
. 5307119
. 0668307
. 9250693

2. 020317
. 4953205
. 0605029
. 8897391

2.11442
. 5661032
. 0731584
. 9603995

-> pl =
Sour ce

Model
Resi dual

225. 398596
3.76299442

Std. Err

. 0237845 86. 921

. 0178904 29. 665

. 0031987 20. 893

. 0178594 51. 797
df VB

3 75.1328652
93 . 040462306

Nunber of obs

97
1856. 86
0. 0000
0. 9836
0. 9830
. 20115

1. 20965
. 0904161
. 0052674
-. 2725821

F( 3, 93)
Prob > F
R- squar ed
Adj R-squared
Root MSE
[ 95% Conf .
1.16688
. 0639129
-. 001006
-. 3269936

1. 25242
. 1169192
. 0115407
-.2181706

-> p| =
Sour ce

Model
Resi dual

120. 944988
2. 02247349

Std. Err
. 021538 56. 164
. 0133463 6. 775
. 0031591 1.667
. 0274003 -9.948
df %S

3 40. 3149961
32 .063202297

Nunber of obs
F( 3, 32)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 36
= 637.87
= 0.0000
= 0.9836
= 0.9820
= . 2514

[ 95% Conf .

Interval]

1.216438
-. 077237

. 005772
. 5502528

Std. Err

. 0539722 22.538
. 0439161 -1.759
. 0140506 0.411
. 063478 8. 668

1.106501
-. 1666911
-. 0228481

. 4209524

1.326376
. 0122171
. 0343921
. 6795532
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->ipl= 7

Nunmber of obs
F( 3, 1284)
Prob > F
R- squar ed
Adj R-squared
Root MSE

1288
94094. 71
0. 0000
0. 9955
0. 9955

. 12159

1.523912
. 1970911
. 0175965
-. 5366443

1.538014
. 2050343
. 0193835
-.5199811

Nunber of obs
F( 3, 242)
Prob > F
R- squar ed
Adj R-squared
Root MSE

246
12675. 98
0. 0000
0. 9937
0. 9936

. 13816

1.689271
. 2684974
. 0297518
. 0325649

1. 731557
. 3000896
. 0374713
. 0761005

Nunber of obs
F( 3, 99)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 103
= 2035. 24
= 0.0000
= 0.9840
= 0.9836
= .21672

Source | SS df VB
_________ o e e e e e e e e e e e e — - -
Model | 4173.02539 3 1391. 00846
Residual | 18.9814588 1284 .014783068
_________ o e e e e e e e e e e e e — - -
Total | 4192.00685 1287 3.25719258
| nodds | Coef Std. Err t
| nnoop | 1. 530963 . 003594 425. 980
| nnp2 | . 2010627 . 0020244 99. 317
I nnp3 | . 01849 . 0004554 40. 599
cons | -.5283127 . 0042469  -124.400
->ipl= 8
Source | SS df VB
_________ o e e e e e e e e e e e — - -
Model | 725.871756 3 241.957252
Residual | 4.61926039 242 .019087853
_________ e
Total | 730.491017 245 2.98159599
| nodds | Coef Std. Err t
| nnoop | 1.710414 . 0107335 159. 353
I nnp2 | . 2842935 . 0080191 35. 452
| nNp3 | . 0336115 . 0019594 17. 154
cons | . 0543327 . 0110507 4.917
->ipl= 9
Source | SS df VB
_________ e
Model | 286. 768458 3 95.5894861
Resi dual | 4.64975632 99 .046967236
......... e e m e e e e e e e — - -
Total | 291.418215 102 2.85704132
| nodds | Coef Std. Err t
| nnoop | 1.521131 . 0363363 41. 863
| nnp2 | . 1103374 . 0143106 7.710
| np3 | . 019345 . 0084659 2.285
cons | -.4183104 . 0261139 -16. 019

[ 95% Conf .

1. 449032
. 0819421
. 0025468
-.470126

Interval]

1.59323
. 1387327
. 0361432
-. 3664948
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->ipl= 10

3 38.8851436
32 .068422222

35 3.39556977

Nunmber of obs
F( 3, 32)
Prob > F
R- squar ed
Adj R-squared
Root MSE

36
568. 31
0. 0000
0. 9816
0.9798
. 26158

1.716114
. 1524621
-. 0361279
. 2764025

1. 996639
. 3749346
. 0664848
. 5258734

Std. Err t

. 0688594 26. 959

. 0546097 4,829
. 025188 0. 603

. 0612369 6. 551
df VB

3 8838.749702
781 .009987457

Nurber
F( 3,
Prob > F
R- squar ed
Adj R-squared
Root MSE

of obs
781)

785
83980. 30
0. 0000
0. 9969
0. 9969

. 09994

1.583292
. 2284843
. 0287532
-. 886152

1. 602557
. 2379518
. 0319463
-. 8683081

Std. Err t
. 004907 324. 623
. 0024115 96. 711
. 0008133 37. 316
. 004545 -193. 008
df %S

3 137.575175
135 .027122962

Nurber
F( 3,
Prob > F
R- squar ed
Adj R-squared
Root MSE

of obs
135)

= 139
= 5072. 28
= 0.0000
= 0.9912
= 0.9910
= .16469

Source | SS
_________ o e e e e e e e - -
Model | 116. 655431

Resi dual | 2.1895111
_________ o e e e e e e e - -
Total | 118.844942

| nodds | Coef
| nmoop | 1. 856376
| nnp2 | . 2636983
| nnp3 | . 0151784
cons | . 4011379
->ipl= 11
Source | SS
_________ e e e e e e e e - -
Model | 2516. 2491
Residual | 7.80020426
_________ e
Total | 2524.04931
| nodds | Coef
| nmoop | 1. 592924
I nnp2 | . 233218
| nNp3 | . 0303497
cons | -.87723
->ipl= 12
Source | SS
_________ e
Model | 412.725524
Residual | 3.66159985
......... e e m e e e e -
Total | 416.387124
| nodds | Coef
| nmoop | 1. 635539
| nnp2 | . 3662254
| nnp3 | . 0795462
cons | -.6992638

Std. Err t

. 0223557 73. 160
. 0134862 27. 156
. 0058544 13. 587
. 0183075 -38.196

[ 95% Conf .

1.591326
. 3395539
. 067968
-. 7354703

Interval ]

1.679752
. 392897

. 0911244
-.6630572
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-> p| =
Sour ce

Model
Resi dual

244 456556
1. 7951569

3 81.4855186
89 .020170302

Nunmber of obs
F( 3, 89)
Prob > F
R- squar ed
Adj R-squared
Root MSE

93
4039. 88
0. 0000
0. 9927
0. 9925
. 14202

1.192253
. 1081199
. 006368
1. 68074

. 0225827
. 0092478

. 000939
. 0222479

1.147381
. 0897447
. 0045022
1. 636533

1.237124
. 1264951
. 0082337
1. 724946

-> pl =
Sour ce

Model
Resi dual

116. 471256
1.15201124

3 38.8237522
37 .031135439

Nunber of obs
F( 3, 37)
Prob > F
R- squar ed
Adj R-squared
Root MSE

41
1246. 93
0. 0000
0. 9902
0. 9894
. 17645

. 9352596
. 0268821
. 0052166
1.591682

. 0375598
. 0228014
. 0033453
. 0468847

. 8591562
-. 019318
-. 0015617
1.496684

1. 011363
. 0730822
. 0119949
1.686679

-> p| =
Sour ce

Model
Resi dual

56. 9611825
2.10632801

3 18.9870608
21 .100301334

Nunber of obs
F( 3, 21)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 25
= 189.30
= 0.0000
= 0.9643
= 0.9592
= . 3167

[ 95% Conf .

Interval]

. 8886003
.2116832
. 0591864
. 6600614

. 079478
. 0432449
. 0153827
. 0977487

. 7233167
. 1217506
. 0271963
. 4567818

1.053884
. 3016158
. 0911766
. 863341
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->ipl= 16

Source | SS df VB Nunber of obs = 6
--------- R F( 3, 2) = 230.00
Model | 9.36582546 3 3.12194182 Prob > F = 0.0043
Residual | .027147655 2 .013573827 R- squar ed = 0.9971
--------- R e Adj R-squared = 0.9928
Total | 9.39297312 5 1.87859462 Root MSE = .11651
| nodds | Coef Std. Err t P>|t] [ 95% Conf. Interval]
_________ e
| nnoop | . 7575798 . 1381421 5.484  0.032 . 1632025 1. 351957
I nnp2 | -.1534394 . 113387 -1.353 0.309 -. 6413041 . 3344252
I nnp3 | -.0359639 . 0199313 -1.804 0.213 -.1217215 . 0497938
cons | . 7252665 . 0663259 10.935 0.008 . 439889 1.010644
->ipl= 17
Source | SS df VB Nurmber of obs = 123
--------- e F( 3, 119) = 3053.57
Model | 373.368485 3 124. 456162 Prob > F = 0.0000
Residual | 4.85014579 119 .040757528 R- squar ed = 0.9872
--------- R e R Adj R-squared = 0.9869
Total | 378.21863 122 3.10015271 Root MSE = .20188
| nodds | Coef Std. Err t P> t] [95% Conf. Interval]
_________ e
| nnoop | 1.264254 . 0232095 54.471  0.000 1.218297 1.310212
I nnp2 | . 2554846 . 015543 16.437 0.000 . 224708 . 2862612
| nNp3 | . 0370303 . 0025662 14.430 0.000 . 0319491 . 0421116
cons | 1.474751 . 0299808 49.190 0.000 1.415386 1.534116
->ipl= 18
Source | SS df VB Nurmber of obs = 95
--------- S F( 3, 91) = 2324.83
Model | 341.404109 3  113.80137 Prob > F = 0.0000
Resi dual | 4.45448083 91 .048950339 R- squar ed = 0.9871
--------- R Adj R-squared = 0.9867
Total | 345. 85859 94  3.6793467 Root MSE = .22125
| nodds | Coef . Std. Err. t P> t] [95% Conf. Interval]
......... e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e m e mmmmm e m ===
| nnoop | 1.313108 . 030892 42.506  0.000 1.251745 1.374471
| nnp2 | . 1801353 . 0149059 12.085 0.000 . 1505266 . 209744
| np3 | . 0179951 . 0018205 9.885 0.000 . 014379 . 0216113
cons | 2.001622 . 0354134 56.522  0.000 1.931277 2.071966
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->ipl= 19

3 63.8546261
76 . 03741949

79 2.46085771

Nunmber of obs
F( 3, 76)
Prob > F
R- squar ed
Adj R-squared
Root MSE

80
1706. 45
0. 0000
0. 9854
0.9848
. 19344

. 0239307
. 0169853
. 0029257
. 0317504

1. 294589
. 2025567
. 0163706

. 589411

1.389913
. 2702148
. 0280246
. 7158838

3 22.576992
21 .056923184

Nunber of obs
F( 3, 21)
Prob > F
R- squar ed
Adj R-squared
Root MSE

25
396. 62
0. 0000
0. 9827
0. 9802
. 23859

. 0566334
. 0358318
. 0059579
. 0717247

. 853342
-. 0058971
-. 0006831

1.125648

1. 088893
. 1431354
. 024097
1.423968

3 74.9809247
79 .046223512

82 2.78773697

Nunber of obs
F( 3, 79)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 83
= 1622. 14
= 0.0000
= 0.9840
= 0.9834
= . 215

Source | SS
Model | 191.563878
Resi dual | 2.8438812
Total | 194.407759
| nodds | Coef
| nmoop | 1. 342251
| nnp2 | . 2363857
I nnp3 | . 0221976
cons | . 6526474
->ipl= 20
Source | SS
Model | 67.7309759
Resi dual | 1.19538687
Total | 68.9263628
| nodds | Coef
| nmoop | . 9711176
I nnp2 | . 0686191
| nNp3 | . 0117069
cons | 1.274808
->ipl= 21
Source | SS
Model | 224.942774
Residual | 3.65165743
Total | 228.594432
| nodds | Coef
| nmoop | 1. 158905
| nnp2 | . 1862828
| np3 | . 030229
cons | . 866542

. 0283697
. 0217528
. 0043844
. 0354968

[ 95% Conf .

1.102436
. 1429851
. 0215021
. 7958874

Interval ]

1. 215373
. 2295806

. 038956
. 9371966
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-> p| =
Sour ce

Model
Resi dual

173. 539553
2.80267227

3 57.8465176
54 .051901338

Nunmber of obs
F( 3, 54)
Prob > F
R- squar ed
Adj R-squared
Root MSE

58
1114.55
0. 0000
0.9841
0.9832
. 22782

. 8611484
-.0174433
. 000104
1. 913165

. 0454843
. 0279733
. 0039589
. 0522935

. 7699578
-.0735264
-. 0078331

1. 808323

. 952339
. 0386398
. 0080411
2.018008

-> pl =
Sour ce

Model
Resi dual

184. 506921
2.21218187

3 61. 502307
57 .038810208

Nunber of obs
F( 3, 57)
Prob > F
R- squar ed
Adj R-squared
Root MSE

61
1584. 69
0. 0000
0.9882
0. 9875
. 197

1. 267037
. 1302579
. 0134795
. 8463711

. 0278727
. 0179956
. 0028976

. 035423

1.211223
. 0942223
. 0076772
. 7754377

1. 322851
. 1662935
. 0192817
. 9173045

-> p| =
Sour ce

Model
Resi dual

78. 0530688
3. 25291544

3 26.0176896
29 .112169498

Nunber of obs
F( 3, 29)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 33
= 231.95
= 0.0000
= 0.9600
= 0.9559
= .33492

[ 95% Conf .

Interval]

. 7206272
-. 1105214
-. 0121664

2.101374

. 1347306
. 0740161
. 0096213
. 1117858

. 4450722
-.2619013
-. 0318442

1.872747

. 9961822
. 0408585
. 0075113
2.330002
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->ipl= 25

3 164.127125
155 .032814745

Nunmber of obs
F( 3, 155)
Prob > F
R- squar ed
Adj R-squared
Root MSE

159
5001. 63
0. 0000
0. 9898
0. 9896
. 18115

. 0205055
. 0113234
. 0016678
. 0224328

1. 37044
. 0667443
-. 0001963
1. 951562

1. 451453
. 1114807
. 0063927
2.040189

3 37.3602602
44 . 035317517

Nunber of obs
F( 3, 44)
Prob > F
R- squar ed
Adj R-squared
Root MSE

48
1057. 84
0. 0000
0. 9863
0. 9854
. 18793

. 0274997

. 014845

. 0015952
. 0439712

. 8326822
-.2072804
-.0271364

1.590869

. 9435262
-. 1474441
-. 0207067

1.768105

3 145. 226783
161 .051977729

Nunber of obs
F( 3, 161)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 165
= 2794. 02
= 0.0000
= 0.9812
= 0.9808
= .22799

Source | SS
Model | 492.381375
Resi dual | 5.08628555
Total | 497. 46766
| nodds | Coef
| nmoop | 1. 410947
| nnp2 | . 0891125
I nnp3 | . 0030982
cons | 1. 995875
->ipl= 26
Source | SS
Model | 112.080781
Residual | 1.55397074
Total | 113.634751
| nodds | Coef
| nmoop | . 8881042
I nnp2 | -.1773623
I nnp3 | -.0239216
cons | 1. 679487
->ipl= 27
Source | SS
Model | 435.680349
Residual | 8.36841432
Total | 444.048763
| nodds | Coef
| nmoop | 1. 476446
| nnp2 | . 1750389
| nnp3 | . 0244074
cons | 1. 649103

. 0294434
. 0227349
. 0043731
. 0301115

[ 95% Conf .

1. 418301
. 1301418
. 0157713
1. 589639

Interval ]

1.534591
. 2199361
. 0330434
1. 708568
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-> p| =
Sour ce

Model
Resi dual

80. 0117646
1.18603266

3 26.6705882
27 .043927136

Nunmber of obs
F( 3, 27)
Prob > F
R- squar ed
Adj R-squared
Root MSE

31
607. 16
0. 0000
0. 9854
0.9838
. 20959

1. 048392
-. 1262209
-. 0106782

2. 294564

. 1043977

. 0835
. 0156954
. 0723208

. 8341852
-. 2975487
-. 0428824

2.146174

1.262598
. 0451068

. 021526
2.442954

-> pl =
Sour ce

Model
Resi dual

394. 496958
2.6686842

3 131. 498986
. 023616674

Nurber
F( 3,
Prob > F
R- squar ed
Adj R-squared
Root MSE

of obs
113)

117
5568. 06
0. 0000
0.9933
0.9931
. 15368

1.383701
. 1510551
. 0329309
1.289012

. 0180565

. 014352
. 0034669
. 0221936

1. 347928
. 1226212
. 0260624
1. 245043

1.419474

. 179489
. 0397995
1.332982

-> p| =
Sour ce

Model
Resi dual

124. 329781
2.36323

3 41.4432603
35 .067520857

Nunber of obs
F( 3, 35)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 39
= 613.78
= 0.0000
= 0.9813
= 0.9797
= .25985

[ 95% Conf .

Interval]

1. 763089
. 2158413

. 015256
2.111643

. 0954174
. 0449643
. 0053539
. 0713644

1.569382
. 1245589

. 004387
1. 966765

1. 956797
. 3071237
. 026125
2.25652
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-> p| =
Sour ce

Model
Resi dual

432. 398629
6.9687771

3 144.132876
143 .048732707

Nunmber of obs
F( 3, 143)
Prob > F
R- squar ed
Adj R-squared
Root MSE

147
2957. 62
0. 0000
0.9841
0.9838
. 22075

1. 664321
. 1682311
. 0173382
. 9179109

1.614848
. 1281412
. 0095199
. 8685034

1.713795
. 208321
. 0251566
. 9673184

-> pl =
Sour ce

Model
Resi dual

45. 0813839
. 534642548

Std. Err

. 0250284 66. 497

. 0202813 8. 295

. 0039553 4,384
. 024995 36.724
df VB

3 15. 027128
25 .021385702

Nunber of obs
F( 3, 25)
Prob > F
R- squar ed
Adj R-squared
Root MSE

29
702. 67
0. 0000
0.9883
0. 9869
. 14624

1. 085683
. 4554284
. 0980967
. 6488838

1. 008763
. 3776588
. 0774378
. 5496767

1.162602
. 533198
. 1187557
. 7480909

-> p| =
Sour ce

Model
Resi dual

264. 342029
2. 86850687

Std. Err
. 037348 29. 069
. 0377607 12. 061
. 0100309 9.779
. 0481696 13.471
df %S

3 88.1140095
90 .031872299

Nunber of obs
F( 3, 90)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 94
= 2764. 60
= 0.0000
= 0.9893
= 0.9889
= .17853

[ 95% Conf .

Interval]

1.377571
. 1627608
. 0156125
. 4258514

Std. Err

. 0188401 73.119
. 0157923 10. 306
. 0034004 4,591
. 0268525 15. 859

1. 340142
. 1313867

. 008857
. 3725042

1. 415001
. 194135
. 022368

. 4791985
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->ipl= 34

3 20.6053714
21 . 16436012

24 2.71948654

Nunmber of obs
F( 3, 21)
Prob > F
R- squar ed
Adj R-squared
Root MSE

25
125. 37
0. 0000
0.9471
0. 9396
. 40541

1.038316
-. 0972957
-. 0362074

. 8863583

1.56832
. 5926304
. 1501645
1.506441

Std. Err t

. 1274283 10. 228

. 1658784 1.493

. 0448092 1.272

. 1490861 8. 025
df VB

3 101.911856
91 .027452341

94 3.27908224

Nunber of obs
F( 3, 91)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 95
= 3712. 32
= 0.0000
= 0.9919
= 0.9916
= .16569

1.415733
. 3720961
. 0646699
. 0014809

1. 494422
. 4291519
. 0793787
. 0906881

Std. Err t
. 019807 73. 463
. 0143618 27.895
. 0037024 19. 453
. 0224547 2.052
df %S

3 10. 0635283
13 . 079264006

Nunber of obs
F( 3, 13)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 17
= 126.96
= 0.0000
= 0.9670
= 0.9594
= .28154

Source | SS
_________ o e e e e e e e - -
Model | 61.8161143

Resi dual | 3.45156253
_________ o e e e e e e e - -
Total | 65.2676768

| nodds | Coef
| nmoop | 1. 303318
| nnp2 | . 2476674
| nnp3 | . 0569785
cons | 1.1964
-> ipl= 35
Source | SS
_________ e e e e e e e e - -
Model |  305. 735567
Resi dual | 2.49816301
_________ e
Total | 308. 23373
| nodds | Coef
| nmoop | 1. 455078
| nnp2 | . 400624
| nNp3 | . 0720243
cons | . 0460845
->ipl= 36
Source | SS
_________ e
Model | 30.1905849
Residual | 1.03043208
......... e e m e e e e -
Total | 31. 221017
| nodds | Coef
| nmoop | 1. 02722
Innp2 | -.1764032
| nnp3 | . 0762584
cons | . 5618133

Std. Err t

. 1537007 6. 683
. 0573916 -3.074
. 0532075 1.433
.1106814 5.076

[ 95% Conf .

. 6951702
-.3003901
-. 0386894

. 3227008

Interval ]

1.359271
-.0524162
. 1912061
. 8009259
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Appendix B

3“ Order Log-Logistic Regression Results for the Elderly — 1992 NMES

->ipl= 1
Source | SS df VB Nurber of obs = 271
--------- S F( 3, 267) = 6312.62
Model | 969. 687286 3 323.229095 Prob > F = 0.0000
Residual | 13.6713752 267 .051203652 R- squar ed = 0.9861
--------- e Adj R-squared = 0.9859
Total | 983.358661 270 3.64206911 Root MSE = .22628
| nodds | Coef Std. Err t P>t [95% Conf. Interval]
_________ o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m o m o m— e — - =
| nnoop | 1.492615 . 0138132 108. 057  0.000 1.465418 1.519811
I nnp2 | . 2132053 . 0081531 26.150 0.000 . 1971528 . 2292577
| nNp3 | . 0216962 . 0014721 14.739 0.000 . 0187979 . 0245945
cons | . 0970413 . 0172941 5.611 0.000 . 0629911 . 1310916
->ipl= 2
Source | SS df VB Nurmber of obs = 286
--------- R F( 3, 282) = 6476.79
Model | 896.414127 3 298.804709 Prob > F = 0.0000
Residual | 13.0099841 282 .046134695 R- squar ed = 0.9857
--------- R Adj R-squared = 0.9855
Total | 909.424111 285 3.19096179 Root MSE = .21479
| nodds | Coef Std. Err t P>t [ 95% Conf. Interval]
_________ e
| nnoop | 1.870395 . 014838 126.054  0.000 1.841187 1. 899602
| nnp2 | . 2991561 . 0099501 30.066 0.000 . 2795703 . 3187419
| nNp3 | . 0202544 . 0018981 10.671  0.000 . 0165181 . 0239906
cons | -.2493622 . 0153731 -16.221  0.000 -.2796228  -.2191017
->ipl= 3
Source | SS df VB Nurmber of obs = 129
--------- e F( 3, 125) = 8213.81
Model | 383.006522 3 127.668841 Prob > F = 0.0000
Resi dual | 1.9428987 125 . 01554319 R- squar ed = 0.9950
--------- R e R Adj R-squared = 0.9948
Total | 384.949421 128 3.00741735 Root MSE = .12467
| nodds | Coef . Std. Err. t P> t] [ 95% Conf. Interval]
_________ e
| nnoop | 1. 052572 . 0108431 97.073  0.000 1.031112 1.074032
I nnp2 | . 2052475 . 0067467 30.422  0.000 . 191895 . 2185999
| nNp3 | . 0425626 . 0017337 24,550 0.000 . 0391314 . 0459939
cons | . 0244914 . 0158575 1.544 0.125 -. 0068926 . 0558753
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-> p| =
Sour ce

Model
Resi dual

1776. 08577
4.0784351

1780. 16421

3 592.028591
536 .007609021

539 3.30271653

Nunmber of obs
F( 3, 536)
Prob > F
R- squar ed
Adj R-squared
Root MSE

540
77806. 15
0. 0000
0.9977
0. 9977

. 08723

1. 456565
. 0989779
. 0180522
-. 8261255

Std. Err t

. 0047581 306. 125
. 0017526 56. 473
. 0006072 29. 730

. 0046334 -178. 298

1.447218
. 095535
. 0168593
-.8352274

1.465912
. 1024208
. 019245
-.8170236

-> pl =
Sour ce

Model
Resi dual

1164. 88921
33. 4497098

3 388. 296405
325 .102922184

Nunber of obs
F( 3, 325)
Prob > F
R- squar ed
Adj R-squared
Root MSE

329
3772.72
0. 0000
0.9721
0.9718
. 32081

1. 353372
. 1354451
. 0077417
-. 0288342

1.319812
. 121858
. 0047423
-. 0704339

1. 386932
. 1490322

. 010741
. 0127655

-> p| =
Sour ce

Model
Resi dual

983. 959069
19. 8638414

Std. Err t

. 0170589 79. 335

. 0069065 19.611

. 0015246 5.078

. 0211457 -1.364
df %S

3 327.986356
268 .074118811

Nunber of obs
F( 3, 268)
Prob > F
R- squar ed
Adj R-squared
Root MSE

= 272
= 4425. 14
= 0.0000
= 0.9802
= 0.9800
= .27225

[ 95% Conf .

Interval]

1.716371
. 1079747
-. 0074709
-. 563099

Std. Err t

. 0276049 62.176
. 0080613 13. 394
. 0050011 -1.494
. 0209306 -26.903

1.662021
. 0921032
-. 0173173
-.6043084

1.770722
. 1238463
. 0023754
-.5218897
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3 101. 298615
103 .039639248

Nunber of obs = 107
F( 3, 103) = 2555.51
Prob > F = 0.0000
R- squar ed = 0.9867
Adj R-squared = 0.9864
Root MSE = . 1991

. 9196342 1.004894

. 1356236 . 1690145
. 0287097 . 0400385
-.3549988 -.257115

Std. Err t

. 0214949 44,767

. 0084182 18. 094

. 0028561 12. 035

. 0246775 -12.402
df VB

3 220.181792
235 .022173052

Nurmber of obs = 239
F( 3, 235) = 9930. 15
Prob > F = 0.0000
R- squar ed = 0.9922
Adj R-squared = 0.9921
Root MSE = .14891

->ipl= 7
Source | SS
Model | 303. 895845
Resi dual | 4.08284255
Total | 307.978688
| nodds | Coef
| nmoop | . 9622642
| nnp2 | . 1523191
| nnp3 | . 0343741
cons | -.3060569
->ipl= 8
Source | SS
Model | 660. 545375
Residual | 5.21066722
Total | 665.756042
| nodds | Coef
| nmoop | 1. 343431
I nnp2 | . 0209974
| nNp3 | . 0058502
cons | -.9076475

Std. Err t

. 0131444 102. 206
. 004437 4,732
. 0019436 3. 010
. 0131758 - 68. 888

[95% Conf. Interval]

1. 317536 1. 369327

. 0122561 . 0297387
. 0020211 . 0096792
-. 9336052 -. 8816898
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Appendix C

Fortran Source Code for Imputation of MOOP

The following variables are needed prior to calling either yngoop3 or
ol doop3:

For units headed by a person | ess than 65 years ol d:

Let:
1 if has private insurance
icov = 2 if Medicaid or Medicare only
3 if uninsured
1if single individua
isize = 2 if famly size 2 or 3
3if fanmily size is 4 or nore
npoor = 1 if census noney incone is |ess than 150% of poverty
2 ot herw se
irace = 2 if Black
1 ot herwi se
v a randomdraw froma uni formdistribution
u a randomdraw froma uni formdistribution
ipl = (icov-1)*12 + (isize-1)*4 + (npoor-1)*2 + irace
t hen

oop = yngoop3(ipl,v,u) ! returns with value of MOOP in $1
For Units headed by a person 65 years old or ol der

i age= 1if head is less than 75 years old
2 if head is 75 years old or ol der

i size = 1if single individua
2if fanmily size is 2 or nore

npoor = 1 if census noney incone is |ess than 150% of poverty
2 ot herw se

ipl = (iage-1)*4 + (isize-1)*2 + npoor
t hen
oop = ol doop3(ipl,v,u) ! returns with value of MOOP in $1
Then add Medicare Part B prem uns:

partB = 0 if incone less than 120% of poverty
PREMF NOLD ot herw se

Where PREMis the yearly prem umand NOLD is the nunber of Elderly.
Source Code for yngoop3, ol doop3 and other need functions:
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function yngoop3(ipl, v, u)
real ypzero(36), cof(4,36)

data ypzero/
& . 065,.041,.075,.143,.061,.083,.012,.012,. 031, .024,.003, . 006
& .397,.606,.219,.628,.371, .408, .212,.279,.237,.507, . 256, . 345
& .378,.482,.248,.420,.151,.194,.103,.128,.043,.126,.036, . 213/

data (cof(n, 1), n=1,4)/1.028337,.32799,.10397, .24814/
data (cof(n,2),n=1,4)/1.2757,.19217, .01234, . 89205/
data (cof(n, 3),n=1,4)/1.64022,.23587,.021783, . 85459/
data (cof(n,4),n=1,4)/2.067369,.5307119, . 06683, . 92506/
data (cof(n,5),n=1,4)/1.20965,.090416, . 005267, -. 27258/
data (cof(n, 6),n=1,4)/1.216438,-.077237,.00577, . 550253/
n=1,4)/1.
=1,4)/1.

data (cof(n,7), 4 530963, . 20106, . 01849, -. 528312/
data (cof(n,8),n=1,4 710414, .28429,.0336115, . 054332/
data (cof(n, 9),n=1,4)/1.52113,.11033,.019345, -. 41831/

data (cof(n, 10),n=1,4)/1.85638,.26369,.01517,.40114/

data (cof(n, 11), n=1, 4)/1.59292, . 2332, . 03035, -. 87723/

data (cof(n, 12),n=1,4)/1. 635539, .36623,.079546, -. 69926/
data (cof(n, 13),n=1,4)/1.19225,.108119,.006368, 1. 68074/
data (cof(n, 14),n=1,4)/.93525,.02688, .0052166, 1. 59168/
data (cof(n, 15),n=1,4)/.8886,.21168,.059186, . 66006/

data (cof(n, 16), n=1, 4)/.75758, -. 15343, -. 03596, . 725266/
data (cof (n, 17), n=1,4)/ 1. 26425, . 25548, . 03703, 1. 47475/

data (cof(n, 18),n=1,4)/1.3131,.180135,.017995, 2. 001622/
data (cof(n, 19),n=1, 4)/1. 34225, .2363857,.0221976, . 652647/
data (cof(n, 20),n=1,4)/.971117,.0686191, . 011707, 1. 2748/
data (cof(n, 21),n=1,4)/1.1589,.186283,.030229, . 86654/

data (cof(n, 22),n=1,4)/.861148, -. 017444, . 000104, 1. 913165/
data (cof(n, 23),n=1,4)/1. 26704, .13025, . 01348, . 84627/

data (cof(n, 24),n=1,4)/.720627, -.1105214, -. 012166, 2. 101374/
data (cof (n, 25),n=1,4)/1.410947,.089113, . 003098, 1. 995875/
data (cof(n, 26),n=1,4)/.8881,-.17736, -.02393, 1. 67948/

data (cof (n, 27),n=1,4)/1. 476446, .17504, . 024407, 1. 6491/
data (cof(n, 28),n=1,4)/1.048392, -.1262209, -. 010678, 2. 294564/
data (cof(n, 29),n=1,4)/1.383701,.151055, .03293, 1. 28901/
data (cof(n, 30),n=1,4)/1.76309, .21584,.01526, 2. 11164/

data (cof(n,31),n=1,4)/1.664321,.1682311,.017338,.917911/
data (cof(n, 32),n=1,4)/1.08568, .45543,.098097, . 648884/
data (cof(n, 33),n=1,4)/1.377571, .1627608, . 0156125, . 4258514/
data (cof(n, 34),n=1,4)/1.303318,.24766,.05697, 1. 1964/

data (cof(n, 35),n=1,4)/1. 455078, . 400624, . 0720243, . 04608/
data (cof(n, 36),n=1,4)/1.02722,-.1764032,.076258, .561813/

/
/
/
/

yngoop3=0. 0
havenp=1. -ypzero(ipl)
if(v.gt.havenp) return

d=cof (4,ipl)

fl=cof (1,ipl)
f2=cof (2,ipl)
f3=cof (3,ipl)

z=am n1(.99, u)
odds=al og(z/(1.-2))

yngoop3=r oot 3(odds, d,f1,f2,f3)
return

end

function ol doop3(ipl, v, u)

real opzero(8), cof(4,8)

data (cof (n, 1), n=1,4)/1.4926,.2132,.02169, .09704/
data (cof (n,2), n=1,4)/1.8704,.2992, . 2025, - . 2494/
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data (cof(n, 3),
data (cof(n,4),
data (cof(n,5),
data (cof(n, 6),
data (cof(n,7),
data (cof(n,8),n

1. 05257, . 20525, . 04256, . 02449/

1. 45657, .098978, . 01805, -. 82613/
1. 3534, .13545,.00774, -.02883/
1.71637,.10798, -.00747, -. 563099/
. 9226, . 15232, . 034374, - . 30606/

1. 34343, .020997, . 00585, -. 90765/

5 35D 35 35S
PRRRRP
ARARDMNDMDDN

—
~ — — ~— ~— —

data opzero/. 1666, .0233,.1010,.016,.0872,.0220, . 0536, . 0165/

ol doop3=0.0
havenp=1. - opzero(i pl)
if(v.gt.havenp) return

d=cof (4,ipl)

fl=cof (1,ipl)
f2=cof (2,ipl)

f 3=cof (3,ipl)

z=am n1(.99, u)
odds=al og(z/(1.-2))

ol doop3=root 3(odds, d, f1,f2,f3)

return
end
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function root3(odds, d,f1,f2,f3)

data tol/.001/
con=d- odds

y0=-con/f1l
zer o0=cube(y0, con,f1,f2,f3)

do inter=1, 20
sl ope=dcube(y0,f1,f2,f3)
st ep=zer 00/ sl ope
i step=1
1 y1l=yO-step/float(istep)
zerol=cube(yl, con,f1,f2,f3)
i f(abs(zerol).It.abs(zero0)) go to 5
i step=i step+1
if(istep.gt.3) goto 4
go to 1

4 y1l=y0-zeroO/f1
zerol=cube(yl, con,f1,f2,f3)

5 i f(abs(zerol).lt.tol) go to 10

yO=y1
zeroO=zerol

r epeat
10 r oot 3=1000. *exp(yl)

return
end

function cube(y,con,f1,f2,f3)
cube=con+f 1*y+f 2*y*y+f 3*y*y*y
return

end

function dcube(y,f1,f2,f3)
dcube=f 1+2. 0*y*f 2+3. 0*f 3*y*y

return
end
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Imputation of Medical Out-of-Pocket (MOOP) Expenditures
to CPS Analysis Files

David M. Betson
University of Notre Dame
February 1998

The purpose of this memo is to describe the methods that were employed to impute medical out-of-
pocket (MOOP) expenditures to the various years of CPS data which were utilized to analyze the NRC
Panel’ s poverty measure recommendations.  The imputation procedure consisted of two parts. estimating
the total amount of MOOP which would be used for a control total for the imputation, and a procedure of

allocating the totals to individual records.

Constructing Control Totalsfor MOOP

After much searching and questioning of researchers both inside and outside of government, |
concluded there did not exist a consistent series for how much the non-ingtitutionalized population spends
directly out of their own pockets for medical services and supplies. In the absence of an official series, |
decided to construct one for the research project of back casting the NRC Panel’ s recommendation to years
prior to 1992 -- the year that was reported in the Panel’ s report.

| began with a simple accounting relationship that states that the aggregate amount of MOOP in current
dollarsis equal to the real per capita MOOP (RPCMOOP) at time t times the current price of health care
(PHC) times the size of the population (POP), i.e.,

MOOP; = POP; x PHC; x RPCMOOF .

Using this identity, a rather smple estimate of MOOP at t could be based upon the assumption that
RPCMOOP remains constant over time? Utilizing this assumption, we could estimate MOOPt using only a
single years estimate of MOOP and a historical series of population estimates and the price of health care.
If B isthe base year in which we have an estimate of MOOP then the specific estimate in any year t would
be

MOOP; =POP; x PHC; x RPCMOOPg

POP,  PHG
POPg * PHCg -

= MOOPg X

To evaluate how well this ssimple estimate performs, | used a historical series published by DHHS
(Table 124 in Health, United States 1992) which reports on the aggregate amount of MOOP (direct out-of-
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pocket payments for services and supplies plus the total amount of health care insurance premiums paid by
households) in the total population (including the institutionalized population). Given | would be back
casting data, | chose the last year of the series, 1991, as my base year. Using a historical series for the total
population and medical price index, | employed the above equation to predict MOOP in each of the
previous ten years in the published DHHS series. The results of this evaluation is presented in the

following table.

MOOP (in billions) Percentage

YEAR DHHS Estimate Difference
1965 23.6 215 -8.8%
1967 238 24.6 3.5%
1970 31.6 30.6 -3.1%
1975 484 45.1 -6.9%
1980 76.1 75.0 -1.5%
1985 124.4 118.9 -4.4%
1987 146.3 138.8 -5.1%
1988 156.2 149.2 -4.5%
1989 168.9 162.3 -3.9%
1990 183.1 178.8 -2.4%
1991 196.5 196.5 0.0%

| feel that this comparison suggests two conclusions. While the naive model consistently
underestimates the published data, it does a fairly good job of predicting previous years MOOP especialy
during the period which we will be imputing, 1979 to the present. Second, the consistent underestimation
of the model suggests that real per capita MOOP has over time been declining not constant as assumed by
the model. While it is true that over this period, the percentage of al health care directly financed out
households pockets has been significantly declining, what has not been documented has been real per
capita spending.

While this exercise built some confidence in what | was going to do, | felt that some other information
could also be used. The Annua Statistical Supplement to the Social Security Bulletin provides annual data
on the amount of premiums paid by households to Medicare Part B. My strategy was to begin where there
was some consensus, MOOP in 1992. As part of the NRC Panel’s work, we received from AHCPR their
estimate of MOORP for the non-institutionalized population in 1992. Their estimate was $219.4 hillion
dollars which included premium payments to Medicare Part B. In 1992, there was $11.0 billion of
Medicare Part B payments. What | decided to do was to forecast and backcast the difference between these
two numbers in 1992 ($208.4) by changes in population (using the CPS counts of total population) and
prices (Medical Care Component of the CPI) employing the above naive accounting model. To arrive at

the aggregate MOOP figure, | would add the published Medicare Part B payments to this estimate. The

MOOP Imputation page - 41




following table presents the results of the calculations for the years of the CPS to which | will be imputing
MOORP values. The numbersin bold type face represent figures from published sources or figures which |

believe there is some consensus.
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Aggregate Control Totalsfor MOOP

Medicare OTHER TOTAL

YEAR Part B MOOP MOOP
1979 23 65.2 67.5
1983 35 101.2 104.7
1989 10.5 158.6 169.1
1992 11.0 208.4 219.4
1994 16.2 236.1 252.3

Allocating Aggregate MOOP to Elderly and Non Elderly Households

The next step is to alocate these aggregates to individual households. | first disaggregated the
aggregate totals into what households (families) headed by non-elderly and headed by elderly adults would
spend on MOOP. |n conversations with Urban Institute and researchers in ASPE (Health), there seemed to
be consensus that roughly 27% of all MOOP was made by elderly units. This percentage was based upon
examination of NMES data from 1987 which was aged to 1992. However, in article by Acs and
Sablehouse (Monthly Labor Review, 1995) the authors report that in 1992, 34% of MOOP expenditures
were made by elderly families reported in the CEX survey (my own calculations on the CEX suggest that
33% of MOOP expenditures were made by the elderly). To be honest, | am not sure which estimate is to
believe so | decided to average the two estimates and use the figure of 30.3% for split between the elderly
and non-elderly populationsin 1992.

The Acs and Sablehouse article show that over the period of 1980 to 1992, the share of MOOP paid by
the elderly has grown. The share of MOOP of the elderly in 1992 was 9.2% higher than in 1980. To
replicate the general pattern of changes in the elderly share, | assumed the following splits of the aggregate
amount of MOOP :

Year: 1979 1983 1989 1992 1994
Elderly Share 27.4% 28.9% 30.3% 30.3% 30.0%

These shares were based upon the change in the relative number of families units headed by an elderly

individual. In particular, | used the following adjustment process :

% of Families Headed by Elderly in Year t
% of Families Headed by Elderly in 1992

Elderly Share of MOOPinYeart = X 30.3
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The following controls were derived for the Elderly and NonElderly subpopulations. Again the numbersin

bold type face, represent figures from published sources or figures which | believe there is some consensus.

Subaggregate Control Totalsfor MOOP (in Billions)

Medicare Other
YEAR Aggregate Part B Elderly MOOP NonElderly
1979 67.5 23 16.1 49.1
1983 104.7 35 26.7 74.5
1989 169.1 10.5 40.7 117.9
1992 219.4 11.0 55.4 153.0
1994 252.3 16.2 59.4 176.7

Allocating the Subaggr egate Control Totalsto Individual Records

The next step is allocate these subaggregates to individual family records. One procedure could be to
compute the average family MOOP expenditure for each subgroup and then assign this average value to
each record. However, given the rather skewed distribution of MOOP spending, this procedure would
greatly overstate the amount of MOOP for the majority of families and hence potentially lead to an
overstatement of poverty in the population.

For the NRC Panel, AHCPR produced tables from the 1987 NMES file which had been aged to 1992.
These tables provided information on the cumulative distribution of MOOP for households which had
MOOP expenditures as well as the percentage of households whom had MOOP expenditures. These detail
tables were produced for various subgroups of the population defined by type of insurance coverage, age of

the head of the family, race, income, and family size. Using the information, | was able to estimate the
probability that a household with a given set of characteristics (Xp) would have MOOP. Let us denote this
probability by

P(Xh)

| was also able to estimate for Elderly and NonElderly populations of the following form describing the
cumulative distribution of MOOP :
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Ln(C/(1-C)) = a + B X}, + yLNMOOP

where
C = the percentile in the MOOP distribution

Xp = avector of family characteristics (age, race, income, and insurance coverage)

LNMOOP = Log of Moop Spending.

The estimated relationship (a,[3,y) was utilized in the following manner. For each household, a uniform
random number was drawn from a random number generator, RN1. If RN1 was less than P(X}) then the

household would be assigned a level of MOOP otherwise the household would be assigned a zero value. If
the household was to be assigned a non zero value of MOOP, a second random was drawn, RN», which

was to represent the percentile in the MOOP distribution to which the family was to be assigned. The level

of MOOP that corresponds to this percentile was then estimated as

Ln(RN2/(1-RN»)) - o - B Xp ]

uxEXP[ y

where [ is a proportional factor computed so that weighted sum of MOOP adds up to the control totals for
the two subgroups of the population: the elderly and nonelderly.

This past summer (1997), | was able to acquire the micro (family) data from which the original
AHCPR tables were constructed. Using this data | was able to reestimate the above equation (1) using the
micro data instead of the aggregated tabular data. Given the larger sample size, | was able to estimate a
more comprehensive model that included interaction terms of the family characteristics and level of
MOOP. The description of variables used and regression results are provided below. Other than using the
newly estimated regression results, the procedures to impute MOOP to the individual records remains the
same as utilized for the NRC Panel report.
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LNMOOP
PUBLIC
UNINS
FS23
FSAM
FS2M
AGE75

NONPOOR

BLACK
PUBLMP
UNLMP
NPLMP
F23LMP
FAMLMP
F2MLMP

A75LMP

MOOP Imputation

Description of Independent Variables

Log of Medical Out of Pocket Expenses

1if Insured by Medicare or Medicaid only; O otherwise
1if Uninsured; O otherwise

1if Family Sizeis 2 or 3; O otherwise

1if Family Sizeis 4 or more; 0 otherwise

1if Family Sizeis 2 or more; O otherwise

1if Head is 75 years or older; O otherwise

1if theratio of the Family’s Census Money Income to Poverty Line exceeds

1.50; 0 otherwise

1if Black; O otherwise

= LNMOOP* PUBLIC

= LNMOOP * UNINS

= LNMOOP * NONPOOR
= LNMOOP* FS23

= LNMOOP * F4AM

= LNMOOP * FS2M

= LNMOOP * AGE75
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Ordi nary | east
Observati ons

Mean of LHS

St dDev of
R- squar ed
F[ 13, 5314]
Log- i kel i hood
ANOVA Sour ce

residual s

Regression Model for NonElderly Population :

squar es regression.

5328
-0.3648372D- 01
0. 4893229D+00
0. 9227089D+00
0. 4879926D+04
- 0. 3744999D+04
Vari ation

Dep. Variable

Wei ght s

Std. Dev of LHS
Sum of squares

Adj ust ed R-squared
Prob val ue
Restr. (R=0) Log-I
Degr ees of Freedom

LNODDS

ONE

0. 1757924D+01
0.1272368D+04
0. 9225198D+00

0. 3217295D- 13

= -0.1056531D+05

Mean Square

Regr essi on 0. 1518964D+05 13. 0.1168434D+04

Resi dual 0. 1272368D+04 5314. 0. 2394369D+00

Tot al 0. 1646201D+05 5327. 0. 3090297D+01
Variable Coefficient Std. Error t-ratio Prob|t|>x Mean of X Std.Dev.of X
Const ant . 90283 0. 2401E-01  37.595 0.00000
LNMOOP 1. 2549 0.1397E-01  89.848 0.00000 -.47910 1.5211
PUBLMP -. 40385 0. 1442E-01 -28.007 0.00000 -.21546 . 86030
UNLMP -.13039 0.1377E-01  -9.467 0.00000 -.19744 . 74545
NPLMP 0. 64415E-01 0. 1184E-01 5.441 0.00000 -.19158 1.1969
F23LMP 0.92141E-01  0.1105E-01 8.338 0.00000 -.13601 . 98365
FAMLMP . 14905 0. 1251E-01 11.912 0.00000 -0.35087E-01 . 75400
BLKLMP  -0.69204E-01 0.1100E-01 -6.290 0.00000 -.18269 . 81236
PUBLI C 1. 2560 0.2782E-01  45.142 0.00000 . 13570 . 34250
UNI NS 1. 0070 0. 2266E-01  44.449 0.00000 . 18131 . 38531
FS23 -.87023 0.1916E-01 -45.427 0.00000 . 43581 . 49591
FSAM -1.1897 0. 2036E-01 -58.434 0.00000 . 28697 . 45239
NONPOOR  -. 19126 0. 2006E-01  -9.533 0.00000 . 74474 . 43605
BLACK . 38658 0.1912E-01  20.215 0.00000 . 19839 . 39882

Regression Model for Elderly Population :

Ordi nary | east squares regression. Dep. Variable = LNODDS
Cbservati ons = 2173 Wei ght s = ONE
Mean of LHS = -0.1392984D+00 Std. Dev of LHS = 0.1831889D+01
StdDev of residual s= 0.4271742D+00 Sum of squares = 0.3950644D+03
R- squar ed = 0.9457987D+00 Adj usted R-squared= 0.9456234D+00
Fl 7, 2165] = 0.5396953D+04 Prob value 0.3217295D 13

Log- i kel i hood
ANOVA  Sour ce
Regr essi on

-0.1231072D+04
Vari ation
0. 6893768D+04

Restr. (R=0) Log-I
Degr ees of Freedom
7

= -0.4398273D+04

Mean Square

0. 9848240D+03

Resi dual 0. 3950644D+03 2165. 0. 1824778D+00
Tot al 0. 7288833D+04 2172. 0. 3355816D+01
Variable Coefficient Std. Error t-ratio Prob|t]|>x Mean of X Std. Dev.of X
Const ant . 50786 0. 1970E- 01 25.777 0. 00000
L NMOOP 1.2170 0. 1288E-01 94. 459 0.00000 0.10989E-01 1. 3975
NPLMP . 44104 0. 1451E-01 30. 387 0. 00000 . 19703 . 92900
A75LMP -0.51473E-01 0.1341E-01 -3.837 . 00012 0.28515E-01 . 95821
F2M.MP -.18101 0.1420E-01 -12.750 0.00000 . 11100 . 93611
AGE75 -. 26820 0. 1895E-01 -14.151 0.00000 . 43580 . 49598
FS2M -. 46551 0. 1959E-01 -23.768 0.00000 . 46710 . 49903
NONPOOR  -. 63639 0.2052E-01 -31.019 0.00000 . 61528 . 48664
Code Segmentsfor Imputation of MOOP
(FORTRAN)
here is the call fromthe main routine :
wher e
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hage=r ef erence person's age

sage=spouse's age

insstat = insurance status of reference person
prem mum = yearly nedicare part b prem num

i ol d=0
i f(hage. gt.64) then
out (21) =ol doop(i seed)
iold=1
i f(sage.gt.64)iold=2
i age=2
el se
out (21) =yngoop(i seed)
i f(sage.gt.64) iold=1
i age=1
end if
medi car e=0
if(insstat.gt.0.and.insstat.ne.4) then
nmedi car e=f | oat (i ol d) *prem mum
i f(ew eq.0.0) nedicare=0
end if
out (21) =out (21) +nedi care

function yngoop(i seed)

real cof (7),dum(7),ycof0(7)

real ypzero(37)

data ypzero/
& .065,.041,.075,.143,.061,.083,.012,.012,.031, . 024, .003,.006
& .397,.606,.219,.628,.371,.408,.212,.279,.237,.507,.256, . 345
& .378,.482,.248,.420,.151,.194,.103,.128,.043,.126,.036, . 213,
& 0./

data cof/.90283, 1. 256, 1. 007, -. 87023, - 1. 1897, -. 19126, . 38658/

data ycof 0/ 1. 2549, -. 40385, -. 13039, . 092141, . 14905, . 064415, -. 0692/

yngoop=0.0

do k=2,7
dum(k)=0.0
r epeat

if(insstat.eq.0) then ! insurance status of reference person
i nsure=3 I uni nsur ed

dum(3)=1.0

else if(insstat.eq.2.or.insstat.eq.4) then

i nsure=2 I public insurance only
dum(2)=1.0
el se

i nsure=1 I private
end if

i fanexi n(13)

if(ifameq.1l) then

i size=1 I famly size = 1

else if(ifameqg.2.or.ifameq.3) then

i size=2 I famly size 2 or 3

dum(4)=1.0

el se

i size=3 I famly size is four or nore

dum(5)=1.0

end if

rneeds=0.0 I census noney incone to needs (poverty line) ratio

pl i ne=xi n( 14)
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i f(pline.ne.0.0) rneeds=cni nc/pline
if(rneeds.lt.1.5) then

i poor =1

el se

i poor =2

dun(6)=1.0

end if

if(xin(29).ne.2) then

irace=1

el se

irace=2

dum(7)=1.0

end if

i pl =(i nsure-1)*12+(i size-1)*4+(ipoor-1)*2+
if(ranl(iseed).lt.ypzero(ipl)) return
cons=cof (1)

do k=2,7

cons=cons+dun{ k) *cof (k)

repeat

ycof =ycof 0(1)

do k=2,7

ycof =ycof +dun{ k) *ycof 0( k)

repeat

(9]

OO0OO0O0O0O0O0

p=ranl(i seed)

i f(imax99.eq.1) p=p*pnax
odds=al og(p/ (1.-p))

yngoop=1000. *exp( (odds-cons)/ycof)

i f(imax99.eq.2) then
yngoop=am nl(amax1( 1., yngoop), 8200.)
end if

yngoop=yngoop*yf ac I yfac nultiplicative factor to hit aggregrate

return
end

MOOP Imputation

I race
I non bl ack

I bl ack

race

ranl is an uni formrandom nunber generator RN O, 1]

If imax99 equals 1 then the distribution of MOOP is bounded at the
pmax percentile -- this is an alternative way to bound "high val ues"
of MOOP conpared to the Pat Doyle's way (inmax99 equal 2) which limts
the elderly to $8200 of MOOP which she estimated to be 99th percentile
of the elderly MOOP Distribution -- see bel ow
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function ol doop(i seed)
real dun{4), cof (4),ycof0(4)
real opzero(9)
data opzero/. 1666, .0233,.1010,.016, .0872,.0220, . 0536, . 0165, 0. /
data cof/.50786, -.2682, -. 46551, -. 63639/
data ycof0/1. 2170, -.05147, -. 18101, . 44104/

ol doop=0.0

do k=2, 4
dum(k) =0.0
r epeat

i f(hage.lt.75) then I age of reference person
i age=1

el se

i age=2

dunm(2)=1.0

end if

if(xin(13).eq.1) then ! fanmly size
i size=1

el se

i size=2

dum(3)=1.0

end if

rneeds=0.0 I census noney incone to needs (Poverty line) ratio
pl i ne=xi n( 14)

i f(pline.ne.0) rneeds=cm nc/pline

if(rneeds.lt.1.5) then

i poor =1

el se

i poor =2

dum(4)=1.0

end if

i pl =(i age-1)*4+(isize-1)*2+i poor

if(ranl(iseed).|lt.opzero(ipl)) return ! pzero is the probability of not
havi ng MOOP

ycof =ycof 0( 1)

do j=2,4

ycof =ycof +dun(j ) *ycof O(j)
r epeat

cons=cof (1)

do k=2, 4
cons=cons+dun{ k) * cof (k)
r epeat

p=ranl(i seed) I pis the random percentile in the MOOP distribution

c ranl is an uniformrandom nunber generator RN O, 1]

If imax99 equals 1 then the distribution of MOOP is bounded at the

pmax percentile -- this is an alternative way to bound "high val ues"

of MOOP conpared to the Pat Doyle's way (inax99 equal 2) which limts
the elderly to $18000 of MOOP whi ch she estimated to be 99th percentile
of the elderly MOOP Distribution -- see bel ow

OO0O0O0O0O00O0

i f(imax99.eq.1) p=p*pnax
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odds=al og(p/ (1.-p))

ol doop=1000. *exp( (odds- cons)/ycof)
i f(imx99.eq.2) then

ol doop=ani n1(anmax1(1., ol doop), 18000.)
end if

ol doop=ol doop*ofac ! ofac = a nultiplicative factor to hit aggregate total

return
end
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Appendix A

NMES Regression Results for the Non Elderly
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